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Quadrature formulas with equal coefficients for interval and circle are combined
to obtain Chebyshev-type quadrature formulas (relative to ordinary area or volume
measure) for "product domains." Upper bounds for the minimal number N = N( p)

of nodes required for polynomial exactness to degree p readily follow. Lower
bounds are obtained by projecting onto certain subsets of lower dimension and
other means. The precise order of N( p) is determined for square, cube, cylindrical
surface, disc, and cylinder, while upper and lower bounds for the order are found
for sphere and ball. Improving recent results of Bajnok and Rabau, the authors
describe so-called spherical t-designs (Chebyshev-type quadrature formulas of
degree t for the sphere with distinct nodes) consisting of /9((3) points. 1994

Academic Press. Inc.

1. INTRODUCTION AND RESULTS

Let E be a compact set in R" and let (J be a finite positive measure on
E. A Chebyshev-type quadrature formula for E and (J is a numerical
integration formula which gives equal weight to the (not necessarily
distinct) nodes which we call t I' ... , tN'

1
--ff(x) d(J(x)
(J(E) E

N

Z N I: f(tJ,
j=l

t j E E. (1.1 )

In other words, integrals are approximated by arithmetic means of func
tion values.

We will say that a system of nodes tl"'" tN generates a quadrature
formula 0.0 of degree (at least) p if the formula is exact for all polynomi
als f(x!, ... , x) of total degree ~ p. The simplest Chebyshev quadrature
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formula is the Gauss formula for the interval [ -1,1] with weight function
1/~. Here the m-point formula has degree 2m - 1,

where ~j = cos«2j - 1)7T/2m) runs over the zeros of the Chebyshev
polynomial Tm(x) = cos(m arccos x).

In this paper we deal with simple two-dimensional surfaces E and
ordinary surface measure u. Our central question is as follows. rflhat is the
minimal number N = NE(p) for which there is a Chebyshev-type quadrature
formula (1.1) of degree p? Our results concern surfaces E which can be
considered as Cartesian products of intervals and/or circles in a certain
parametrization. Thinking of large p we will say that NE(p) is of order p\

if there are positive constants c 1 and c2 such that

p z 1.

Using this terminology, the work of S. N. Bernstein [2,3,4] shows that
for the interval 1= [-1,1] and du(x) = dx,

cf. Section 2. For the unit circle C = C(O, 1) in R2
"" C with du = ds, one

will immediately think of nodes at the (p + 1)th roots of unity to obtain

Ndp) = p + 1,

cf. Section 3. Combining these results we prove the following estimates,
always using ordinary surface area:

(i) for the square Q = 12 in R 2
, NQ(p) x p4;

(ij) for the cylindrical surface CS = C X I in R3, Ncs(p) x p3;

(iii) for the unit disc D in R 2, ND(p) x p3;

(iv) for the unit sphere 5 = 5(0,1) in R3, C,p2 ~ N.s(p) ~ C2p3.

We derive explicit constants in all cases and exhibit Chebyshev-type
quadrature formulas. The latter and the corresponding upper bounds
follow directly from the product structures. Lower bounds may be ob
tained by projection onto a subset of lower dimension or by ad hoc means:
in each case we have presented the method that gave the best result.
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Numerical results of A. B. J. Kuijlaars (17] for the interval I suggest that
our lower bounds in (i)-(iii) are somewhat closer than the upper bounds.

For the sphere S we do not know the precise order of Ns( p), but we
conjecture that Ns(p) ;:: p2. This conjecture is based on a certain equiva
lence between Chebyshev-type quadrature on S and a "spherical Faraday
cage problem" involving equal point charges, see (15]. Specifically, a
Chebyshev-type quadrature formula for S with nodes gj, ... ,gN has
degree p if and only if point charges 1/N at these N nodes result in an
electrostatic field which vanishes to order p at the origin. For the point
charges problem it appears plausible that one can achieve p == c";N.

In combinatorics, J. J. Seidel et at. have introduced so-called spherical
t-designs, that is, configurations of N distinct points g1" •• ,gN on S for
which formula (1.1) with E = S has degree (at least) t, cf. (6,12,23]. We
exhibit spherical t-designs consisting of &,([3) points, improving previous
results by B. Bajnok [1] and P. Rabau and Bajnok [22].

The present paper includes some comments on other sets E, such as
ellipse, cube, solid cylinder, ball, and higher dimensional spheres. For the
interval (-1,1] we also discuss ultraspherical measures. For the case of
the torus T in R3, Kuijlaars has just shown that NT(p) ;:: p2, see (18].

A preliminary form of some of our results has appeared in the second
author's Ph.D. thesis [20].

2. THE INTERVAL [-1, I]

The best known quadrature formula is the classical Gauss formula. Let
Pm(x) denote the Legendre polynomial of degree m ~ 1 with zeros

We may write the m-point Gauss formula in the form

I I m-f [(x) dx == I: Ad(ad,
2 -I k ~ I

where the Cotes-Christoffel numbers Ak = Ak(m) are given by

(2.1 )

Formula (2.1) has degree 2m - 1: it is exact for all polynomials of degree
~ 2m - 1.
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It is appropriate to observe that

147

as m -+ 00,

uniformly on every compact set in the z-plane. Here 10 is the Bessel
function of order O. Also, in terms of the first positive zero jl = jO.1 of 10,

m1A1(m) 7' 1~(j1)-1:= 3.7104,

(2.2)

(2.3)

cf. [25] and for the monotomcIty, see [2-4]; a related inequality for
m1A1(m) occurs in [8].

In the thirties, Bernstein [14] obtained fundamental results on
Chebyshev-type quadrature for the interval [- 1, 1] with constant weight
function. Taking (2.2) into account, his results may be formulated as
follows.

THEOREM 2.1 (Bernstein). (i) Suppose that the nodes Xl"'" X N on
[ -1,1] are such that the quadrature formula

1 I 1 N-f f(x) dx := - L f(x))
2 -1 N j= J

has degree (at least) 2m - 1 (m ~ 1). Then at least one of the nodes x j

is ~ uI(m), and

(iD Let m ~ 1 and let Nt = N 1(2m - 1) be the smallest even
integer> 4V2(m + 1Xm + 4). Then there exist points t; E (-1,1), t l >
t1 > ... > t1m - l , tZm - i = -t i and positive integers p-; = P-1 m -; such that

for all polynomials f(t} of degree ~ 2m - 1. Observe that

N J(2m - 1) < 4V2(m + l)(m + 4) + 2. (2.5)

Formula (2.4) is a symmetric Chebyshev-type formula having N1(2m - 1)
nodes in which the node t j appears with multiplicity I-ti' L.l-ti = Npm - 1).
In this way Bernstein proved that the smallest Cotes-Christoffel number
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AI(m) determines the order of the minimal number of nodes in a
Chebyshev-type quadrature formula of degree 2m - 1; in the notation of
Section 1,

It has recently been proved by Kuijlaars (16] that the multiple nodes in
(2.4) can always be split into simple nodes without losing polynomial
exactness to degree 2m - 1.

For his proof of part (i) Bernstein employed two special polynomials
which will also be useful to us,

(2.6)

Observe that F I ( x) is strictly increasing for x ~ a 2 and that by the Gauss
formula,

1/1
- F2(x)dx=0. (2.7)
2 -I

For some of our multidimensional problems it is important to know that
the first part of Bernstein's Theorem extends to arbitrary positive mea
sures u on [ - 1, 1], see W. Gautschi [9, 10]. We will describe the situation
for the normalized ultraspherical measure

def r(v + 1) 2 v - 1/2

du,,(x) = r(v + t)r(i) (1 - x ) dx,
1

v>
2

of total mass 1. The role of the Legendre polynomials is now taken over by
the ultraspherical polynomials P,~~)(X) which we standardize as in Szego's
book [25, Sect. 4.7]. The Christoffel numbers in the corresponding Gauss
formula may be derived from [25, Sect. 15.3]. Using the duplication
formula for the Gamma function, the first Christoffel number for the
normalized measure becomes

2v F(m + 2v) _]
A(V)(m) = __ (1 - ( 2) p(")'(a )-2

I F(2v) F(m + 1) 1 m I

where a j = a\")(m) is the largest zero of P,~:,>(X).

(v of- 0),
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We discuss the precise behavior of >.<j')(m) for m -+ 00. One may ob
tain an asymptotic formula for P;:) in terms of the Bessel function JfJ

with {3 = v - t, cf. [25, Sects. 8.1 and 4.7]. Also using the relation
nm + b)/nm) - mb one finds that

(
z ) r(v + -0ml - 2vp(v) cos- -+ 2v- 1/ 2Z- fJJ (z)

m m r(2v) fJ'
m -+ 00 (2.8)

uniformly on every compact set in the z-plane. Hence by differentiation,
cf. [25, Sect. 1.71] for the Bessel function,

( Z)( Z)(l) r(v+t)ml - 2vp(v)I cos- -sin- - -+ 2 V
-

1/ 2{-Z-fJJ (z)}.
m m m m r(2v) fJ+l

By (2.8), a.(m)::::: cos(jl/m), 1 - af ::::: sin2(jdm), where jl = jfJ,l de
notes the smallest positive zero of JfJ' A computation involving the
duplication formula for the Gamma function finally shows that for m -+ 00,

T(m+2v+l)
------A(V)(m) -+A

T(m) I v

T(v+1) '2v-1 J (. )-2
r(v + t)r(t)lv-I/2,. v+I/2 lv-I/2,1 .

(2.9)

The left-hand side of (2.9) increases monotonically with m when 0 < v ~ t
(cf. [14]) and when v = 1, see (2.10) below. We can show general mono
tonicity for m > mo(v) and perhaps A v provides an upper bound for the
left-hand side of (2.9) whenever v ~ 0; cf. [8] for 0 < v < 1.

Leaving speculation aside, a general upper bound Bv (resembling A)
for the left-hand side of (2.9) may be derived from the literature. In
connection with the ultraspherical Chebyshev-type quadrature problem,
general upper bounds for A(Jl(m) have been investigated by L. Gatteschi
[7], A. Meir and A. Sharma [19], and F. Costabile [5]. If we correct for
some small errors, the final result of Gatteschi and Costabile may be
stated as follows:

THEOREM 2.2. Suppose that the nodes XI"'" x N on [-1,1] are such
that the quadrature formula
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has degree (at least) 2m - 1. Then for II ~ 0,

1 1 T(m+211+1) 1
N> > ------- > _m zv + 1

- ,>.\vl(m) - B
v

r(m) - B
v

'

where

B T(II+ 1) ·z,,-] J (. )-z
v = r(1I + Dr(~)lV+l/Z,1 v-liZ lv+I/Z,1 .

In Section 6 we will use the case II = 1, where the relevant polynomials
are the Chebyshev polynomials of the second kind:

sin(m + 1)0
p(l)(x) = U (x) = cos 0 = x',

m m sin (j ,

2 7T
,>.(ll(m) = -- sinz--.

] m+l m+l
(2.10)

The other direction. For the ultraspherical measures duv with II > 1/2,
Kuijlaars [16] has recently extended the second part of Bernstein's theo
rem, thus establishing the order estimate

3. THE UNIT CIRCLE

Let C = C(O, 1) be the unit circle in RZ
"'" C described by x + iy = z =

eid>, -7T < ¢ S 7T, with element of arc length ds = d¢ = dzliz. Systems
of nodes on C will be denoted by

or z = x + iy. = eid>!
J J J '

j = 1, ... , N. (3.1)

THEOREM 3.1. (j) Suppose that the nodes 0.1) give a Chebyshev-type
quadrature formula

(3.2)

which is exact for all polynomials g( x, y) of degree s n - 1. Then every
closed arc of C(O, 1) of length 27TIn must contain a node Zj = eid>} and
hence N ~ n.
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(ij) For N = n one obtains a quadrature formula 0.2) which is exact to
degree n - 1 if and only if one uses equidistant nodes on C. For all
trigonometric polynomials G( q,) of order .:'5: n - 1 and every real 8,

211'j
<Pj = 8 + -.

n
(3.3)

For the case of distinct nodes, so that one deals with "circular (-designs"
where t = n - 1, the inequality N ~ n and part (ij) are contained in the
combinatorial work of P. Delsarte, J. M. Goethals, and J. J. Seidel, see [6,
Theorems 5.11, 5.12 and Example 5.14]. Using complex analysis, Y. Hong
[13] has obtained results on circular t-designs involving more than t + 1 =

n points.
Verification that equidistant nodes work. Observe that on C(O, 0, every

polynomial g(x, y) of degree n - 1 can be written as a trigonometric
polynomial G(<p) of order n - 1 and conversely. It readily follows that
formula (3.2) is polynomially exact to degree n - 1 if and only if

1 f dz 1 fTr 1 fTr
- Zk~ == - eikd> dq, == - (cos kq, + i sin kq,) d<p
211' C lZ 27T -Tr 211' -Tr

k = 1, ... ,n -1. (3.4)

The first three terms in (3.4) are equal to zero for every positive integer
k. On the other hand, if one takes N = n the last three terms will vanish
for 1 .:'5: k .:'5: n - 1 if one places the nodes Zj at the nth roots of unity.
More generally one may rotate the system of nth roots through a fixed
angle, which leads to a proof of (3.3).

For a complete proof of Theorem 3.1 and for later use we introduce the
special trigonometric polynomials of order < n given by

2 '(t - cos 11'In) (3.5)

n ~ 2,
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where TJt} is the Chebyshev polynomial given by Tn(cos 4» = cos n4>. By
0.3) with n ~ 2, using the nodes corresponding to 4> = ±7TIn,
±37Tln,'" on -7T < 4> ~ 7T,

(3.6)

Observe that GI(4» ~ 0 for every 4> while Gi 4» > 0 only for cos 4> >
cos 7T/n.

Completion of the proof of Theorem 3.1. (a) Assuming that the hypoth
esis of part (i) is satisfied, we will show that every closed arc of C(O, 1) of
length 27TIn must contain a node ZJ = eicl>,. Here it is sufficient to take
n ~ 2 and to consider the arc corresponding to -7TIn ~ 4> ~ 7TIn; the
case of other arcs may be treated by "rotation" of the functions G;C4».
Suppose then that the nodes OJ) are such that 0.2) is exact to degree
n - 1. Then by (3.6),

N

L:G\(4)j) >0,
j= I

N

I: G z(4>j) = O.
j~l

(3.7)

We may choose the values 4>j on ( -7T, 7T] and have to show that at least
one of them lies on [-7T/n,7T/n]. By 0.7) there are two possibilities:
either all 4>/s belong to the zero set Z(G z), or r.f~Pi4» = a because
there is cancellation of positive and negative values. In the first case one of
the 4>/s must be equal to ±7Tln or else r.7~Pl(cP) would vanish. In the
second case Gz(cP) > 0 for at least one cPj and such a point on (-7T,7T]

must belong to (-7Tln, 7Tln).

(b) Continuing under the hypothesis of part CD, it follows from (a)
that N ~ n. Moreover, if N = n the nodes must be equidistant on C or
else some closed arc of length 27TIn would be free of nodes.

Remark 3.2. In the terminology of Section 1, Nc(p) = p + 1. One may
ask what can be said about quadrature formulas of type (3.2) for curves
other than circles. For the ellipse E in R Z given by x = a cos cP, y = b sin cP,
a ~ cP < 27T, results of Ya. L. Geronimus [11] suggest that NE(p) may also
be of order p.
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4. THE SQUARE

Let Q = /2 be the closed region in R2 described by -1 .:s; x .:s; 1,
- 1 .:s; y .:s; 1. Systems of nodes in Q will be denoted by

j = 1, . .. ,N. (4.1 )

THEOREM 4.1. 0) Suppose that the nodes (4.1) give a Chebyshev-type
quadrature formula

(4.2)

which is exact for all polynomials f(x, y) ofdegree .:s; p. Then for p 2 1 and
m = [(p + 3)/4] so that 4m - 3 .:s; p .:s; 4m and with A, = A/m) as in
Section 2,

(ij) Let m be the least positive integer such that 2m - 1 2 P and let ti ,

M;, and N j(2m - 1) provide a quadrature formula as in part (ii) of
Bernstein's Theorem 2.1. Set N(p) = N 1(2m - 1)2. Thenforal/polynomials
f(x, y) of degree ::::; p,

112m- I

'4 !f(x, y) dxdy = ~() r: MiMd(t i , tk )· (4.3)
Q P i.k~l

Here

N(p) < 2{(p + 4)(p + 10) + n(

Proof of Part 0). Suppose that formula (4.2) with the nodes (4.1) is
exact to degree p 2 1. For m = [( p + 3)/4] we define F t( x) = Pm (X)2 /
(x - 0')2 and F 2(x) = (x - O'1)F1(x) with 0'1 = O'\(m) as in formula (2.6).
We next form two polynomials of degree ::::; p as follows:

g(x, y) = F\(x)F)(y),

h(x, y) = (x + Y - 2O' I )g(x, y) = F2(x)F1(y) + F 1(x)F2(y).



154 KOREVAAR AND MEYERS

Using both (4.2) and the Gauss formula, cf. (2.7), we then find that

1 N 1
N Lg(xj,YJ = "4!g(x,y)dxdY =,qg(ll'l,ll'l) > 0, (4.4)

j~ 1 Q

1 N 1
- 1: h(xj , Yj) = -4! h(x, y) dxdy = O. (4.5)
N j=1 Q

(a) We will use these results to show that at least one of the nodes
(4.0 belongs to the closed triangular region

T= {(x,y) E Q: x +y:?: 2ll'1}' (4.6)

Indeed, in view of (4.5) there are two possibilities for the nodes (xj ' y):
either they all lie in the zero set Z(h) of h, or there are positive and
negative values h(x j , y) which cancel each other. In the first case at least
one of the nodes must belong to Z(h) - Z( g), hence to the segment

L = {(x, y) E Q: x + y = 2ll'1} c T,

or else the sum in (4.4) would vanish. In the second case h(x j , y) > 0 for
at least one node (x j ' Y) and such a point must lie to the Northeast of L,
hence in T.

(b) Renumbering the nodes we may assume that (XI' YI) E T. Then
by (4.4) and the nonnegativity of g,

N

NA~g(ll'l' a)) = L g(x j , Yj) Z g(x 1 , Yl) :?: ming(x, y)
j~' T

. F,(x) F,(y)
= g(a1,admm ------

T F)(a)) F1(a))

=g(a\,ad{m}nf(x)f(y)( (4.7)

where

Note that f( x) is positive, increasing and convex for X > ll'2' On T,
X :?: 2a) - 1 > ll'2 by the property 1 - a, < ll', - a2 of the zeros of Pm'
cf. [25, Sect. 6.3]. Thus f(x) f( y) is an increasing function of x on T,
hence its minimum is attained on L.
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We will obtain a simple lower bound for

minf(x)f(y) = min f(x)f(2a
J
-x)

L "I"x" 1
m

= min c~ n {(x - a,)(2a, - ai - x)}
,,\ "X" I i~2

m

= min c~n{(a\-ai)2_(x-ad2}
"I "x,; I i~2

= f(l)f(2a] - 1). (4.8)

Observe that f(al) = 1 while by the differential equation for Pm(X),
!'(a l ) = tP;;'(a\)/P;"(a l ) = a\/(l - aD. Thus since the graph of f(x)
over the interval [2a[ - 1,1] lies above its tangent line at the point
(ai' f(a\»,

Combining (4.7)-(4.9) and using (2.2) we conclude that

N> (f(l)f(2a 1 - 1) )2 > ~A -2 > ~JI( . )4m4
- AI 16 I 16 () h

9
2 46J~(jl)4p4 > .OOOI5 p 4.

Proof of Part (ij). Part (ij) will follow from the observation that under
the given conditions, formula (4.3) is actualIy true for all monomials

f(x, y) = x"yf3 with 0 5 a, f3 5 2m - 1.

Indeed, by Bernstein's formula (2.4),

1 ( 1 fill
- ), xayf3 dxdy = - x a dx- f yf3 dy
4 Q 2 -] 2-1

1 2m-112m - 1

L. JL t a L. JLktf.
N\(2m-l) 1=1 IINI(2m-l) k~1

The upper bound for N(p) follows from inequality (2.5) for Npm - 0,
coupled with the remark that m 5 t( p + 2).
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Remark 4.2. Using the notation of Section 1 we have found that

A similar proof will show that for the cube K = [3 in R 3,

In both cases, lower bounds may also be obtained by projection onto a
diagonal and use of the Chebyshev-Markov-Stieltjes inequalities [25,
Sect. 3.41] to estimate the relevant Christoffel number.

5. THE CYLINDRICAL SURFACE

Let CS be the cylindrical surface C<O, 1) X [ - 1, 1] in R 3 described
by -1 ::; z ::; 1, x = cos cP, y = sin cP (0 ::; cP < 27T or -7T < cP ::; 7T), with
surface element da = ds dz = dz d cPo Systems of nodes on CS will be
denoted by

j = 1, ... ,N. (5.1 )

THEOREM 5.1. (i) Suppose that the nodes (5.1) give a Chebyshev-type
quadrature formula

lIN-J f(x, y, z) dsdz "" - 'E f(x j , Yj' Zj) (5.2)
47T cs N j~ I

of degree p. Then there is a constant c > 0 such that

(For p ~ 4 one may take c = .0049, and for p ~ 40, c = .OU

(ij) For p ~ 1, let m be the smallest integer ~ (p + 1)/2 and choose
points t i E (-1,1), positive integers J.Li and an integer Npm - 1) to
provide a quadrature formula as in part (ij) of Bernstein's Theorem 2.1. Set

(2k - 1)7T
cPk = ---

(p + 1) ,
N(p) = (p + 1)N1(2m - 1).
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Then for all polynomials f( x, y, z) ::: F( z, ¢) of degree ~ p,

157

1 f 1 fl 121T
- f(x,y,z) dsdz = - F(z,¢) dzd¢
4w a 4w -I 0

1 p+12m-l

= N(p) kZ:1 i~ I-LiF(Zi'¢k)' (5.3)

Here

N(p) < ti(p + 1){(p + 4)(p + 10) + ti} ~ Cp 3,

with C = 1.5 for large p.

Proof (a) Let the nodes (5.l) satisfy the hypothesis of part 0), let
p ;::: 1, q = [(p + 0/2]. Applying formula (5.2) to f(x, y, z) = h(z), where
h is an arbitrary polynomial of degree ~ 2q - 1 ~ p, we find that

1 lIN-f h( z) dz = - L h( zJ.
2 -1 N j~ I

Hence by Bernstein's Theorem 2.1 there is a node (z j' ¢) with Z j Z ex I(q),
the largest zero of Pq{t). We renumber the nodes so that Z 1 = max Zj'

Rotation of the system of nodes about the z-axis will not affect the
polynomial exactness of (5.2) to degree p, hence we may assume that
¢l = 0 so that

(b) Continuing under the hypothesis of part (i), we next take p Z 4,
m Z 1, n;::: 2 and 2m + n - 2 ~p. Observe that m ~p12 ~ q, so that

(5.4)

Letting F1 be the polynomial of degree 2m - 2 from (2.6) and G[ the
trigonometric polynomial of order n - 2 from (3.5), we define a nonnega
tive polynomial f on CS by

(5.5)

640/79/1·11
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Since deg f < p we may apply formula (5.2) to obtain the inequality

Because H = FIG!, its integral may also be evaluated by the Gauss
quadrature formula for [-1,1], combined with Theorem 3.1 for the circle.
The result is, cf. (2.7), 0.6),

(5.7)

We now combine (5.6) and (5.7). Using (5.4) and the monotonicity of
F/z), the inequality t cot t ~ 1T/4 on (0, 1T/4] and the second formula
(2.2), one obtains the inequality

Under the given conditions on m and n, the maximum value of m 2n is at
least p3/27 as can be seen by taking m = n = [(p + 2)/3] ~ p/3. Final
conclusion: for p ~ 4,

with c = .0049. (5.9)

For p ~ 40 one can use c = .008. Further improvement to c = .01 results
if one exploits the fact that for our parameters, F,(a,(q)) / F,(al(m)) > 1.5.

(c) To verify the quadrature formula (5.3) it is sufficient to consider
the functions

F(z,cP) =ZACOSlJcP, O~A,IJ~p.

For IJ > 0 both the integral and the sum in (5.3) are equal to zero, cf.
Theorem 3.1. In the remaining case F(z, cP) = z\ formula (5.3) follows
from the hypothesis of part (ij) and Bernstein's Theorem 2.1. That result



MULTIDIMENSIONAL CHEBYSHEV QUADRATURE 159

and the inequality m :$ (p + 2)/2 also imply the upper bound for N( p)
in our theorem.

6. THE UNIT DISC

Let D = D(O, 1) be the closed unit disc in R2 described by x = r cos <P,
y = r sin <P, 0 :$ r :$ 1, -Tr < <p :$ Tr, or 0 :$ <p < 2Tr. Systems of nodes in
D will be denoted by

j= I, ... ,N. (6.1 )

THEOREM 6.1. (i) Suppose that the nodes (6.0 give a Chebyshev-type
quadrature formula

( 6.2)

of degree (at least) p. Then

1
N> --. p3 > .0063p 3.

16Tr 2

(ii) For p 2': 2, let m be the smallest integer 2': (p + 2)/4 and let t i , }Li'
and N 1(2m - 1) provide a quadrature formula as in part (ii) of Bernstein's
Theorem 2.1. Set

(2k - 1)Tr (21 - 1)Tr
r, = /(t,+1)/2, <Pk = p + 1 ' <PI,/ = }Li( p + I) ,

N(p) = (p + 1)NI(2m - 1).

Then for all polynomials f( x, y) = F( r, <p) of degree :$ p,

1 f I 1112
".- f ( x, y) dx dy = - F( r, <p) r dr d<p

TrD Troo
I 2m -I p+ \

= N(p) i~l }LikZ:IF(ri,<pd
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N(p) < (p + l){ty2(p + 9)(p + 21) + 2} S Cp 3,

with C = .36 for large p.

Proof (i) Suppose that formula (6.2) with the nodes (6.0 has degree
p ~ 1 and set m = [(p + 1)/2]. Then for any polynomial g(x) of
degree s 2m - 1, taking f(x, y) = g(x) in (6.2),

1 2 lIN- Jf(x, y) dxdy = - f g(x)~ dx = - L g(x j ).
rr D rr -1 N j~ 1

Thus by Theorem 2.2 with II = 1, using formula (2.10),

m+l (m+l)3 1
---;;c----- > --~- > p'
2sin 2(rr/(m+1)) 2rr 2 16rr 2

(ij) It is sufficient to verify (6.3) for all monomials x"yf3 of degree
Asp. Such monomials can be written as linear combinations of terms

F(r,</» = r A sin(A - 2JL)</>

with 0 s 2JL s A. We will check (6.3) for the latter functions.
We first take A - 2JL = q > O. In that case the integrals over Dare

equal to zero and also the sums: Since 0 < q s p, Theorem 3.1 shows that

p+ I p+ I

L cos q</>k = L sin q</>k = 0,
k= I k~ 1

JLi(P+[) JLi(P+1)

I: cos q</>u = 1: sin qcf>, / = O.
I-I 1=1

It remains to consider the case A = 2JL with JL s p /2 s 2m - 1. How
ever, for F(r, </» = r 2JL

, formula (6.3) reduces to a special case of
Bernstein's formula (2.4) when we substitute r 2 = (t + 1)/2.

The upper bound for N( p) follows from inequality (2.5) for N I(2m - 1),

combined with the observation that m s (p + 5)/4.

Remark 6.2. The solid cylinder x 2 + y2 S 1, -1 s Z s 1 in R3 may
be treated as the product of D(O, 1) and the interval [-1,1]. Here a
Chebyshev-type quadrature formula of degree p will require order p5
nodes.
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7. THE UNIT SPHERE

Let S = S(O, 1) be the unit sphere in R3 described by

Z = cos 6, x = sin 6 cos <P, y = sin 6 sin 4>,
o :S 6 :S 7T, 0 :s 4> < 27T,

with area element

dO'(x,Y,Z) = sin8d6d4> = Idzld4>.

Systems of nodes on S will be denoted by

j = 1, ... , N. (7.1)

THEOREM 7.1. (i) Suppose that the nodes (7.1) give a Chebyshev-type
quadrature formula

liN
-!.f(x,y,z)dU'(x,y,z) "'" N :LfaJ (7.2)
47T S j=1

of degree (at least) p, that is, (7.2) is exact for all polynomials f(x, y, z) of
degree :s p. Then the number N' of distinct nodes must exceed p2/4, hence

N:2: N' > p2/4.

(ij) For p :2: 0, let m be the smallest integer :2: (p + 0/2 and let t i , IJ-i
and N/2m - 0 provide a quadrature formula as in part (ij) of Bernstein's
Theorem 2.1. Set

(2k - 1)7T (21 - 1)7T
4>k= p+l' 4>i,I=lJ-j(p+I)'

N(p) = (p + I)N](2m - 1).

Then for all polynomials f( x, y, z) ~ F( z, 4» of degree :s p,

1
-ff(x, Y, z) dO'(x, y, z)
41T 5

1 fl 12
17'= - F( z, 4» dz d4>

47T -I 0

1 2m-1 p+1 1 2m-liL,(p+J)

= --;v-() L IJ-i L F( Zi' 4>d = ~():L L F( Zi' 4>i./)·
P i=1 k=1 P i=l 1=1

(7.3)
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N(p) < ti(p + 1){(p + 4)(p + 10) + ti}.

For the proof we recall some simple facts about spherical harmonics, d.
[21, 24]. A spherical harmonic Y/t) of order n is the restriction to S of a
homogeneous harmonic polynomial h,,(x, y, z) of degree n,

(x,y,z)=rt, r;:o: 0, t E S.

The spherical harmonics of order n form a rotation invariant linear
subspace Hn of L 2(S) of dimension 2n + 1. A standard orthogonal basis
of Hn is given by the functions

Y", ,( z, 4» ~ (sin 8) I,I( DISlp,,)( cos 8)e i'q,

= (l - Z 2) Isl/2 P,~lsll( z) e'sq" -n :s; s :S; n. (7.4)

The restriction to S of any polynomial f(x, y, z) of degree q is equal to an
element of the direct sum

dim Vq = (q + 1{ (7.5)

Proof of Theorem 7.1, (i) Let the number of distinct nodes in the
system (7.1) be N'. Define q = [/Lv'] so that (q + 1)2 > N'. There will
then be a nonzero linear combination G of basis elements of Vq which
vanishes at each of the nodes t p ., "(N' Indeed, a system of N' homoge
neous linear equations in more than N' unknowns always has a nonzero
solution. Denoting the harmonic polynomial corresponding to G by g and
setting gg = fo, we have

deg fo :S; 2q, ~fo dfJ > 0,
N

L fo(t j ) = o.
j~l

Thus formula (7.2) is not exact for fO' Conclusion: if quadrature formula
(7.2) with the nodes (7.1) has degree p, then

p < 2q :S; 2yN' :S; 2YN, N;:o: N' > p2j4.

(ij) Since every polynomial f(x, y, z) of degree :S; p reduces to an
element F(8, 4» ~ F(z, 4» of the linear space Vp on S, it will be sufficient
to verify the formulas (7.3) for the basis elements

F(z,4» = Y".,(z,4», n=0,1, ... ,p,-n:s;s:s;n. (7.6)

Now for 0 < lsi s p, both the integral and the sums in (7.3) will vanish for
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j 21T . .L

elS", deb = 0,
o

p+l IL/P+\}

L eisq,k = L eisq,j./ = 0,
k~ 1 1= I

cf. Theorem 3.1. It remains to consider the case s = 0,

Os n s p.

However, in that case formula (7.3) reduces to a special case of formula
(2.4) in Bernstein's Theorem 2.1.

The inequality for N( p) follows from inequality (2.5) and the observa
tion that m s (p + 2)/2.

COROLLARY 7.2. The last member in (7.3) provides a Chebyshev-type
quadrature formula of degree p for S with N(p) distinct nodes, hence there
exist so-called spherical t-designs in R3 consisting of (9'«3) points.

We conjecture that there exist such designs consisting of &(t 2) points.

COROLLARY 7.3. In the terminology of Section 1,

P2/4 < Ns ( p) < Ii (p + 1) {(p + 4)( p + 10) + Ii}.
Remarks 7.4. Lower bounds for Nip) of order p2 may also be

obtained by using projections. Thus it can be shown that in a quadrature
formula (7.2) of degree p, there must be a node 'i on every spherical cap
of (spherical) radius 2 arcsin jJp, where jl is the first positive zero of the
Bessel function 10 ,

Treating the unit ball B = B(O, 1) in R3 as a kind of product of sphere
and interval, we would obtain inequalities

C,p4 S NB(p) S C2p5,

cf. Theorem 2.2 with v = 3/2.
The present methods readily extend to higher dimensions. For the

d-dimensional unit sphere Sd in Rd + I our result would be

(cj>O).

Here we also expect that the lower bound gives the true order.
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